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Grain yields of irrigated durum wheat in Arizona 
consistently average over 7 Mg ha–1, twice the 
national average (USDA-NAAS, 2016). Similar 

systems for bread wheat, which CIMMYT classifi es as mega-
environment 1 (Hodson and White, 2007), are among the 
most productive wheat systems globally. Nitrogen management 
is critical in high-yielding wheat systems. For durum wheat 
in Arizona, prices received by growers are reduced if grain 
protein is less than 23 g N kg–1 (Blandino et al., 2015; Liang 
et al., 2014). Nitrogen fertilizer recommendations for durum 
wheat in Arizona currently target 33 to 37 kg N applications 
per 1000 kg grain for protein ranges from 19 to 22 g N kg–1 
(Ottman and Th ompson, 2006). However, there are currently 
no adjustments to N fertilizer recommendations based on 
crop water status. Nitrogen credits for pre-plant soil test NO3
and irrigation water NO3 can be subtracted from these N 
requirements. In addition to soil test NO3, stem NO3 testing 
is recommended (Ottman and Th ompson, 2006), but is time-
consuming and precludes rapid in-fi eld management. Canopy 
refl ectance measurements from hand-held or ground-based 
multispectral sensors have potential to assess in-season biomass 
and N status and therefore guide in-season N fertilizer applica-
tions in wheat (Raun et al., 2002; Mullen et al., 2003; Li et 
al., 2009). Crop refl ectance has also been used to guide late-
season N management for wheat grain protein levels (Wright 
et al., 2004). Canopy multispectral refl ectance data are typi-
cally used to calculate a VI such as the normalized diff erence 
vegetation index (NDVI). Tucker (1979) proposed NDVI as 
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ABSTRACT
Interest in active optical sensors (AOS) for guiding N fertilizer 
management of crops like wheat (Triticum aestivum L.) has grown 
rapidly since their introduction in the mid-1990s. Recently, AOS 
have been used to assess water status of crops in addition to plant N 
status. Specifi c vegetation indices (VIs) might assess N stress while 
minimizing eff ects of water stress. A 2-yr study (2013–2014) was 
conducted on a Casa Grande sandy loam soil in Maricopa, AZ, 
with durum wheat (T. durum Desf) under an overhead sprinkler 
system. Uniquely, this study had 10 unrandomized levels of irriga-
tion and fi ve rates of N fertilizer. Th e objectives were to compare 12 
VIs for their ability to distinguish irrigation and N fertilizer eff ects 
and to determine how well the VIs estimated biomass, plant N, 
grain yield, grain N, and yellow berry (opaque starchy grain). Two 
Crop Circle 470 AOS were passed at a fi xed height, 1 m above the 
tallest plants in the fi eld, every 7 to 10 d during the growing sea-
son. Th e normalize diff erence vegetation indices (NDVIs) showed 
highly signifi cant response to N rate in three of four growth-stage-
years, but signifi cant water and small N eff ects at Zadoks 32 (early 
stem elongation) in 2014. Th e canopy chlorophyll content index 
(CCCI), DATT (Datt, 1999), and Meris terrestrial chlorophyll 
index (MTCI) were the most consistent VIs in distinguishing N 
rates, with minimal water eff ects. No VIs detected water stress with 
minimal N eff ect as well as the infrared thermometer (IRT) mea-
surements of canopy temperature did.
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Core Ideas
•	 Interest in the use of active optical sensors for guiding N fertilizer manage-

ment of crops like wheat has grown rapidly since the mid-1990s. Recently, 
active optical sensors have been used to assess water status of crops in addi-
tion to plant N status.

•	 We conducted a 2-yr study on a Casa Grande sandy loam soil in Maricopa, 
AZ, with durum wheat under an overhead sprinkler system. Uniquely, this 
study had 10 unrandomized levels of irrigation and fi ve rates of N fertilizer.

•	 Th e objectives were to compare 12 vegetation indices for their ability to distin-
guish irrigation and N fertilizer rates and to determine how well the vegetation 
indices estimated biomass, plant N, grain yield, grain N, and yellow berry.

•	 Th e canopy chlorophyll content index, Datt, and Meris terrestrial chlorophyll 
index were the most consistent vegetation indices in responding well to N, with 
minimal water eff ects. No vegetation indices detected water stress with minimal 
N eff ect as well as canopy temperature measured with infrared thermometers. 
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(RNIR– R red)/(RNIR+Rred), where RNIR and Rred are reflec-
tances in the near infrared (NIR) and red regions, respectively.

Highly productive wheat systems increasingly face challenges 
to jointly optimize water and N management when supplies 
of both inputs are constrained by availability, high costs, and 
concerns over adverse environmental impacts. Many VIs do 
not discriminate well between effects of water and N deficits. 
Canopy temperature is effective for water management, but 
adoption as a management tool appears to have been limited 
by the costs of sensors and the complexity of correcting sensor 
data for large, dynamic effects of wind, radiation, and humid-
ity. Identifying VIs that independently diagnose water and N 
status might enable joint management of irrigation and N inputs.

In addition to guiding N fertilizer management, VIs, such as 
NDVI, have been tested extensively for managing irrigation in 
wheat (Hunsaker et al., 2005a; Er-Raki et al., 2007) and cotton 
(Gossypium hirsutum L.) (Hunsaker et al., 2005b). Specifically 
these studies used NDVI to estimate crop coefficients and/
or to estimate ET (Hunsaker et al., 2005a; Hunsaker et al., 
2005b; Glenn et al., 2011). Several studies have used VIs from 
canopy reflectance to assess both N management and irriga-
tion effects in corn (Clay et al., 2006; Shiratsuchi et al., 2011) 
and in wheat (Fitzgerald et al., 2006; Cabrera-Bosquet et al., 
2011; Clay et al., 2012; Tilling et al., 2007). In irrigated corn 
in Nebraska, Shiratsuchi et al. (2011) compared six VIs using 
the active sensors Crop Circles ACS 210 and ACS 470 for their 
ability to distinguish N from water stress. They reported that 
the DATT and Meris terrestrial chlorophyll index (MTCI) 
were the most sensitive VIs to N with minimal influence of 
water. Nitrogen by water field studies are lacking for high protein 
durum wheat with active optical sensors, and for large number of 
irrigation levels.

“Active” optical sensors for measuring canopy reflectance 
(Holland et al., 2004; Solari et al., 2008; Fitzgerald et al., 
2010; Erdle et al., 2011) employ on-board polychromatic light 
sources, and are therefore less sensitive to time of day effects 
and cloudiness compared to passive sensors (de Souza et al., 
2010). Typically, red reflectance has been used as a reference 
waveband in the NDVI calculation, but now there is growing 
interest in the use of “amber” wavebands at 590 nm (Holland 
et al., 2004; Solari et al., 2008). Amber (590 nm) or green (550 
nm) reflectance has been selected to minimize the saturation 
observed at high leaf are indices and N rates when using the 
traditional red NDVI (Gitelson et al., 1996). Although several 
studies compared green/amber and red NDVIs from different 
sensor types (Hong et al., 2007; Shaver et al., 2010; Bronson 
et al., 2011), comparisons with the same sensor type are rare 
(Shiratsuchi et al., 2011). Another strategy researchers have 
employed to address the problem of the saturation of NDVI 
with dense, high N canopies is to calculate the normalized dif-
ference red edge index (NDRE). Rouse et al. (1974) proposed 
NDRE as (RNIR– R red edge)/(RNIR+Rred edge), where RNIR 
and Rred edge are at 760 and 720 nm, respectively. The NDRE 
index and canopy chlorophyll content index (CCCI, simple 
version calculated as NDRE/NDVI) are less well-studied in 
the literature than the NDVI, but their use in agricultural 
research is increasing (Barnes et al., 2000; Long et al., 2009; 
Shiratsuchi et al., 2011). Considering previous related work, 
there is a need for a systematic evaluation of a large number of 

VIs, calculated from more than two or three wavebands to assess 
N status of irrigated wheat at a large range of water regimes.

Infrared thermometry of canopy temperature has long been 
utilized as a plant water metric, and as a tool in irrigation 
management of wheat (Jackson et al., 1977; Idso et al., 1977). 
Although the main interest of this study is the use of VIs to 
assess plant N and water status, infrared thermometer (IRT) 
measurements of canopy temperature provide a valuable com-
parison reference for water and heat stress.

There were several hypotheses in this study. Vegetation 
indices may differentially detect N fertilizer rate and irrigation 
levels. Additionally, it was hypothesized that VIs using amber 
may be more sensitive to N than VIs using red visible bands, 
and that VIs that employ a red-edge band may be more sensi-
tive to N or water stress than NDVI.

The objectives of this study were to:
1. Determine the effect of N fertilizer rate and irrigation level 

on 12 VIs calculated from weekly canopy reflectance from 
an AOS and on canopy temperature with mixed models 
and with partial correlation.

2. Assess with stepwise regression which plant variable each 
of the 12 VIs is the most sensitive to: in season biomass or 
plant N concentration.

3. Correlate in-season biomass, plant N concentration, grain 
yield, grain N, and percent yellow berry with the 12 VIs 
and with canopy temperature.

MATERIALS AND METHODS

The study was performed for two growing seasons, 
2012–2013 and 2013–2014, at the Maricopa Agricultural 
Center (33.0675° N, 111.9715° W, 358 m above sea level) of 
the University of Arizona in Maricopa, AZ (Mon et al., 2016). 
Average annual rainfall is 170 mm, and the site is classified 
as a hot desert climate (Köppen climate classification). The 
soil is a Casa Grande sandy loam (fine-loamy, mixed, superac-
tive, hyperthermic Typic Natrargid, USDA-NRCS, 2017). 
Initial 1 M KCl-extractable soil profile (0–1.2 m) NO3–N was 
32 kg N ha–1. The experiment was conducted under one span 
(55 m long) of a two-span end-feed linear-move overhead sprin-
kler irrigation system (Valmont Industries, Inc., Valmont, NE; 
mention of commercial products does not imply endorsement 
or recommendation but is solely for reader convenience). The 
sprinklers were 1 m above the ground, and sprinkler spacing 
was 1.5 m. The study consisted of five rates of N fertilizer and 
10 rates of irrigations (Mon et al., 2016). Durum wheat cultivar 
Orita was planted at 150 kg seed ha–1 in 18-cm rows in early 
December of each year.

Irrigation was scheduled according to estimated daily evapo-
transpiration (ETc), calculated by the FAO-56 dual crop coef-
ficient procedures (Allen et al., 1998). The field was uniformly 
irrigated from planting to mid-January each year, keeping soil 
water depletion <45%. Then an irrigation gradient of 10 unran-
domized sections (Fig. 1), was applied by varying the nozzle size 
in a gradient pattern across 50 m of the 55-m linear span (Mon 
et al., 2016). Sections were 4.6-m-wide and were irrigated by 
three sprinkler nozzles of the same size. The 10 nozzle flow 
outputs ranged from 2.4 to 13.8 L min–1. In each 4.6 m wide 
irrigation plot, the center 2.5 m was the prescribed rate and 
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the 1.05 m ends were a blend of water from the adjacent plot. 
The base (1.0) irrigation level was applied in section 8 (Fig. 1), 
where soil water depletion was maintained <45% with the aid 
of soil water balance calculations. Irrigation levels varied from 
0.35 irrigation fraction in water level 1 to 1.14 in water level 10. 
The study was conducted in the North span of the two-span 
overhead irrigation system in 2013, with the irrigation gradient 
decreasing from South to North. In 2014 the study was moved 
to the South span and the irrigation gradient direction was 
reversed, decreasing from North to South (Fig. 1). Soil texture 
(sampled in every subplot) was very uniform in our fields, with 
CVs of sand and clay content ranging from 8 to 20%, which 
may have been an issue if soil texture gradients were present in 
the direction of the irrigation gradients. As is frequently the 

case for large-scale irrigation studies, in this study irrigation 
levels were replicated three times, but they were not random-
ized (Hanks et al., 1980; Johnson et al., 1983), due to the limi-
tation of having only one irrigation span available to us.

A total of 15 main plots were laid out perpendicular to the 
irrigation system in three randomized complete blocks with 
five N treatments (Fig. 1). Plot size was 50 by 4 m (length 
by width). Nitrogen fertilizer rates were 0, 84, 168, 252, 
and 336 kg N ha–1 using liquid urea ammonium nitrate 
(320 g N kg–1) and was applied using a high clearance vehicle 
equipped with a Raven SCS 440 controller, Raven flow meter, 
GPS, and butterfly valve (Raven Industries, Sioux Falls, SD). 
Eight drop lines were fitted with spray nozzles every 30 cm. 
The highest N rate imposed was purposely chosen to exceed 

Fig.	1.	Water	and	N	plot	layout	for	durum	wheat	overhead	sprinkler	study,	Maricopa,	AZ,	2013,	2014.
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the University of Arizona’s N recommendation of 168 and 
280 kg N ha–1 for durum wheat for Trix clay loam (fine-
loamy, mixed, superactive, calcareous, hyperthermic Typic 
Torrifluvent, USDA-NRCS, 2017) and Casa Grande sandy 
loam soils, respectively (Doerge et al., 1991). The total amount 
of N fertilizer for each treatment was equally split for three 
applications and applied at Zadoks stages 30, 32, and 39 
(Zadoks et al., 1974). Every fertilizer application was followed 
immediately by an irrigation. 

Plant samples were taken at Zadoks stages 32 (early stem 
elongation, second node visible), 39 (late stem elongation, flag 
leaf visible), and 75 (ripening, medium milk) for plant biomass 
and total N uptake from the five odd numbered irrigation 
subplots (i.e., 1, 3, 5, 7, 9) per N treatment. Zadoks 75 was 
considered the stage of maximum biomass accumulation and 
N uptake (Malhi et al., 2006). Two rows of plants, along 0.5 
m row length were cut at the ground from each N subplot, and 
oven-dried at 65°C for 72 h.

Grain yield was harvested at grain maturity (Zadoks 92) from 
the undisturbed areas on the western half of the 4-m-wide N plots 
in May of each year. In 2013, plots were harvested with a Hege 
180 plot combine (Wintersteiger AG, Ried im Innkreis, Austria) 
fitted with a 1.98-m cutter bar. In 2014, plots were harvested 
with a Model 8 Massey Ferguson combine (Massey Ferguson, 
Duluth, GA) fitted with a 1.52-m cutter bar. Grain from each 
plot was collected in bags and immediately weighed. Subsamples 
of grain were weighed and oven-dried at 65°C for 72 h, and then 
re-weighed to determine moisture content. Dried plant and grain 
samples were ground to 0.5 mm and analyzed for N analysis with 
a Leco-Truspec CN analyzer (Leco Corp., St. Joseph, MI). Grain 
yield, N uptake and N use efficiency inour study, as affected by 
the 10 rates of irrigation and the five rates of N are discussed in 
detail in a companion paper (Mon et al., 2016).

Canopy reflectance was measured every 7 to 10 d using two 
AOS, the Crop Circle ACS-470 sensors (Holland Scientific 
Inc., Lincoln, NE), starting after 1 January. Sensors were 
deployed on a four-wheel proxial sensing cart called PSCM1 
(White and Conley, 2013), with the sensor height at 1 m 
above the tallest plants. The two sensors were mounted in-line 
with the detectors sets of each sensor 30 cm apart. The Crop 
Circle ACS-470 sensor field of view (FOV) is 30° ´ 14°. Data 

acquisition rate was 5 Hz, and one pass per plot was made 
traveling 0.4 to 0.7 m s–1. The first Crop Circle sensor utilized 
interference filters of 800 nm (20 nm bandwidth), 590 nm (10 
nm bandwidth), and 670 nm (10 nm bandwidth). The second 
sensor had filters of 780 nm (20 nm bandwidth), 530 nm (10 
nm bandwidth), and 730 nm (10 nm bandwidth). One hour 
before the proximal sensing runs, both AOSs were calibrated to 
zero (blocked) and 1.0 fraction reflectance (to a small internal 
white panel) for each filter with a FieldCAL SC-1 (Holland 
Scientific Inc., Lincoln, NE). Crop Circle data were logged 
using a single Holland Scientific GeoSCOUT GLS-420 
data logger. A Hemisphere (Hemisphere GPS, Calgary, AB, 
Canada) Crescent A100 GPS receiver provided submeter accu-
rate differential geopositioning system information.

Formulas for the 12 VIs tested are shown in Table 1. There 
was some concern about potential problems with calculating 
VIs with reflectance data from both AOS, in terms of filters 
or sensor bias. Therefore checks were conducted where filters 
were swapped between the two sensors and after re-calibrating 
scanned reflection panels. Results were consistent after switching 
filters between sensors. The three NDVIs were also calculated 
normalized difference vegetation index  amber (NDVIA), nor-
malized difference vegetation index  red (NDVIR), and normal-
ized difference vegetation index  green (NDVIG) by substituting 
R800 with R780. The magnitude of these NDVIs with R780 were 
about 5% less than with R800 (R780 averaged 90% of R800). 
However, results of the data analysis (described below) were iden-
tical, so therefore results for VIs using R780 are not presented.

A 28° full angle FOV Apogee IRR-P (SI-131) IRT was also 
deployed on the PSCM1, mounted level to the ground at AOS 
height with a sensor facing nadir (White and Conley, 2013). 
Air temperature was measured near the IRT using a Type T 
(copper-constantan, 43 µV °C–1) shaded thermocouple junc-
tion. Temperature and GPS data were logged with a CR3000 
data logger at 5 Hz (Campbell Scientific, Logan, UT). 
Radiometric temperatures were analyzed as canopy/air tem-
perature differences (TC–TA) (Idso et al., 1977; Jackson et al., 
1977). Canopy temperature data expressed as Tc–Ta were used 
because this reflects the surface energy balance, transpiration, 
and the leaf temperatures, which are affected by stomatal regu-
lation (Jackson et al., 1977; Idso et al., 1977).

Table	1.	Twelve	vegetation	indices	used	in	water	by	N	durum	wheat	field	study,	Maricopa,	AZ,	2013–2014.
Vegetation	index Wavebands	and	calculation Reference

Normalized	difference	vegetation	index-red	(NDVIR) (R800– R670)/(R800	+	R670)† Tucker,	1979
Normalized	difference	vegetation	index-amber	(NDVIA) (R800– R590)/(R800	+	R590) Holland	et	al.,	2004;	Solari	et	al.	2008
Normalized	difference	vegetation	index-green	(NDVIG) (R800– R530)/(R800	+	R530) Gitelson	et	al.	1996
Chlorophyll	index	(CI) (R800)/(R590)		–	1 Gitelson	et	al.,	2005;	Shiratsuchi	et	al.,	2011
Physiological	reflectance	index	(PRI) (R590– R530)/(R590	+	R530) Peñuelas	et	al.,	1994
Normalized	difference	vegetation	index-red-red	edge	
(NDRRE)

(R730–-	R670)/(R730	+	R670) Gitelson	et	al.,	2002

Normalized	difference	vegetation	index-amber-red	edge	
(NDARE)

(R730– R590)/(R730	+	R590) Modified	from	Gitelson	et	al.,	2002

Normalized	difference	red	edge	index	(NDRE) (R800– R730)/(R800	+	R730) Gitelson	and	Merzlyak	1994
Canopy	chlorophyll	content	index	(CCCI) (NDRE)/(NDVI-Red) Barnes	et	al.,	2000,	Cammarano	et	al.,	2011
DATT (R800v	R730)/(R800– R670) Datt,	1999
Meris	terrestrial	chlorophyll	index	(MTCI) (R800–R730)/(R730–R670) Dash	and	Curran,	2004
Chlorophyll	index	vegetation	index	(CIRE) (R800)/(R730)	–	1 Gitelson	et	al.,	2005
†	R800	is	reflectance	(fraction	of	active	light	source)	at	800	nm,	R670,	is	reflectance	at	670	nm	etc.
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Canopy temperature data from the CR3000 data logger 
were merged with the Crop Circle data using PROC MERGE 
in SAS by “UTC_TIME” (SAS Institute, 2013). Data files 
were then assigned to subplots using “Geoprocessing/Intersect” 
procedures in ArcMap 10 (ESRI, 2015). The effects of N fertil-
izer rate, irrigation level, and their interaction on the 12 VIs, 
Tc–Ta, plant biomass, plant N, and total N uptake were deter-
mined at Zadoks 32, and 39 using the PROC MIXED proce-
dure (SAS Institute, 2013), with a repeated measures option 
for irrigation level. Fernandez (1991) and Piepho et al. (2004) 
recommended an analysis of variance with repeated measures 
to account for the correlations arising from serial ordering of 
a treatment like line-source irrigation that is not randomized. 
Fernandez (1991) used PROC GLM in SAS, but the PROC 
MIXED framework was used by Piepho et al. (2004) and 
in the example of SAS/STAT User’s Guide (SAS Institute, 
2016), which uses the Hanks et al. (1980) original line-source 
irrigation data. The replications are not independent using the 
line-source irrigation systems and thus are considered repeated 
measures. PROC MIXED overcomes the unrandomized repli-
cate issue by providing the option of incorporating a covariance 
structure among the repeated measures that results in appropri-
ate adjustments to the error terms and their associated degrees 
of freedom. (Littell et al., 1996).

Replicate and replicate × N rate were considered random 
effects. Nitrogen rate, irrigation level, and N × irrigation were 
considered fixed effects. We employed the PDIFF option in the 
mixed procedure, which is for pairwise t tests of means, use-
ful when main or interaction effects are significant. Irrigation 
levels will be referred to as “water” for the rest of the paper.

Second, the 12 VIs, Tc–Ta, plant biomass, plant N, and total 
N uptake at Zadoks 32 and 39 were partially correlated with 
water level, controlling for N rate, and partially correlated with 
N rate, controlling for water level. This was done with PROC 
CORR and a “partial statement”. Third, a step-wise regression 
(addition method) of the 12 VIs (dependent variables, one at a 
time) was performed, vs. plant biomass, and plant N at Zadoks 
32 and 39 using PROC REG. Finally, simple correlations were 
calculated of the 12 VIs, and Tc–Ta at all dates with final bio-
mass, total N uptake, grain yield, grain N and percent yellow 
berry using PROC CORR.

RESuLTS
Wheat biomass responded positively to irrigation level 

at Zadoks 32 and 39 in both years of the study (Table 2). 
Response of biomass to N, on the other hand, was not yet 
evident at Zadoks 32 in either year, and remained absent at 
Zadoks 39 in 2014. Plant N concentration showed strong N 
fertilizer rate effects at both growth stages in both years (Table 
2). Total N uptake at Zadoks 32 and 39 responded positively 
to both N and water (irrigation) in all four growth stage–year 
combinations. Nitrogen × water interactions in three plant 
measures were most apparent at Zadoks 39 in 2014 (Table 2).

In both years, NDVIA, NDVIR, and NDVIG exhibited 
strong N and water effects at Zadoks 32 and 39 (F tests in 
Table 2, Fig. 2). Nitrogen × water interactions were significant 
only at Zadoks 39 in 2013 and 2014 (Table 2). The partial cor-
relation coefficients for the three NDVIs were larger for N than 
for water at both growth stages in 2013, but at Zadoks 32 in 

2014, water effects were larger (Table 2). The partial correlation 
coefficients for N with NDVIA and NDVIG were in all cases 
slightly larger than for NDVIR.

The chlorophyll index using amber (CI) showed significant N 
rate and water effects that were similar to the three NDVIs in 
both years (Table 2). The NIR and amber wavebands in the CI 
are the same as in NDVIA, so the sensitivity to N and water was 
similar. Partial correlation with N for the physiological reflec-
tance index (PRI) was weaker at Zadoks 32 than the NDVIs in 
both years (Table 2). The sign of the partial correlations to N and 
water were mostly negative with PRI. The trend of PRI vs. N rate 
was far less pronounced than with NDVIs (Fig. 2).

Among VIs that employed red edge reflectance, partial corre-
lation showed that NDRE was more sensitive to N than CCCI 
in both growth stages in 2013 (Table 2). Notably, in both 
growth stages in 2014, CCCI showed highly significant partial 
correlation with N (r = 0.80–0.86), with no significant partial 
correlation with water. The DATT (Fig. 2) and MTCI, on the 
other hand, showed significant partial correlation with N in 
2013, with no correlation to water (Table 2). In 2014, DATT 
and MTCI had larger partial correlation coefficients with N 
than water. Figure 2a and 2b show this differential N and water 
trend for DATT that the other three VIs in the figure do not 
exhibit. At Zadoks 32, DATT had no N × water interaction, 
and very little water effect (Fig. 2a and 2b). Significant DATT 
water trend is noted at the two highest N rates at Zadoks 39 
(Fig. 2a and 2b), determined by pairwise t tests which reflects 
the significant N × water interaction in the mixed model anal-
ysis (Table 2). The chlorophyll index vegetation index (CIRE) 
F tests for water and for N were similar to that of CI for all 
growth stage-year combinations.

Canopy temperature showed strong significant negative 
partial correlation with water (r = –0.76 to –0.90), with no sig-
nificant partial correlation (r are ns to –0.35) with N in 2014 
(Table 2). The partial correlation of canopy temperature with N 
in 2013 was substantially less than with the VIs. As discussed 
in Mon et al. (2016), canopy temperature was depressed with 
N fertilizer, but these effects were small compared to the large 
canopy cooling effect of irrigation rate.

Stepwise regression of the VIs vs. plant N and biomass 
showed higher R2 values at Zadoks 39 compared to Zadoks 32 
in both years (Table 3). The NDVIA estimated plant N before 
biomass in all growth–stage–year combinations. The NDVIR, 
on the other hand, estimated biomass before plant N in three 
of four of six growth-stage-years. Plant N was related well at 
Zadoks 32 and 39 in 2013 and at Zadoks 39 in 2014, with 
DATT and MTCI, that is, R2s > 0.70. The NDRE and CCCI 
gave good correlations with plant N in several cases, but did not 
show greater R2s than NDVIs or DATT and MTCI.

Simple correlation among the 12 VIs, grain yield, and plant 
measures are shown in Table 4. The NDVIs showed high cor-
relation with grain yield in three of four growth stage–year 
combinations, that is, r > 0.78. The NDARE and NDREE 
estimated grain yield as well as the three NDVIs. The NDRE, 
CCCI, PRI, CI, and CIRE generally correlated very highly 
with grain yield as well in all combinations but Zadoks 32 in 
2013. Correlations with grain N were highest with CCCI in 
two of four growth stage–year combinations, with r > 0.64. 
The DATT and MTCI had consistent high correlations with 
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grain N as well. At Zadoks 32 in 2013, correlation between 
grain N and NDRE, DATT, MTCI, and CIRE was 0.84 to 
0.85. Yellow berry vs. VI correlations followed a similar trend 
as with grain N, with a negative sign. The CCCI, DATT, and 
MTCI had high negative correlations with yellow berry all four 
growth stage–site-years (Table 4). Correlations between final 
biomass and the NDVIs was high, that is, >0.81 in all com-
binations but Zadoks 32 in 2013. Biomass correlations with 
other VIs such as CI, CIRE, and PRI followed a similar pat-
tern. Negative correlations between canopy temperature and 

grain yield or biomass were as high as the best performing VIs 
at Zadoks 39 in both years. At Zadoks 32 in 2013, the correla-
tion between canopy temperature and grain yield was –0.65, 
while the second highest correlation was with NDVIG at 0.49.

DISCuSSION
Three-D surface response of NDVIA to water and N shows 

that the trends are smooth and consistent (Fig. 2a and 2b). The 
water-N response surface of CCCI is not nearly as smooth as 
NDVIA or DATT (Fig. 2a and 2b). The DATT had a larger, 

Table	2.	F	tests	for	repeated	measures	proc	mixed	model,	and	partial	correlation	coefficients	(corr	coeff)	of	water	and	N	effects	for	12	
vegetation	indices	of	durum	wheat,	Maricopa,	AZ,	2013–2014.

VIs†
Nitrogen	F 

test
Water	F 
test

W×N	F 
test

N	corr	
coeff

W	corr	
coeff

Nitrogen	F 
test

Water	F 
test

W×N	F 
test

N	corr	
coeff

W	corr	
coeff

2013
Zadoks	32 Zadoks	39

NDVIA 51** 9.6** ns‡ 0.89** 0.36** 131** 142** 5.4** 0.90** 0.77**
NDVIR 49** 14** ns 0.85** ns 112** 138** 3.8** 0.89** 0.76**
NDVIG 70** 15** ns 0.90** 0.56** 140** 129** 4.7** 0.96** 0.77**
CI 48** 10** ns 0.89** 0.35** 115** 94** 9.3** 0.87** 0.77**
PRI 12** 23** ns –0.66** 0.47** 116** 138** 10** –0.87** –0.76**
NDARE 33** 10** ns 0.83** 0.49** 122** 123** 6.0** 0.89** 0.80**
NDRRE 30** 14** ns 0.75** ns 94** 143** 5.6** 0.88** 0.80**
NDRE 77** 8.3** ns 0.91** ns 162** 133** 10.3** 0.91** 0.74**
CCCI 56** 7.5** ns 0.83** –0.26* 30** 19** 14** 0.62** –0.54**
DATT 67** 5.2** ns 0.91** ns 149** 24** 20** 0.90** ns
MTCI 73** 5.3** ns 0.91** ns 112** 36** 21** 0.88** ns
CIRE 74** 7.8** ns 0.92** ns 140** 135** 11** 0.91* 0.74**
Tc–Ta 7.1** 8.1** ns –0.50** –0.50** 5** 84** ns –0.35** –0.90**
Plant	measures
			Biomass ns 3.3* ns ns –0.29* 6.3* 11** ns 0.59** ns
			N	concentration 39** 3.5* ns 0.81** ns 83** 8.1** 6.1** 0.94** ns
			Total	N	uptake 5.6* 3.6* ns 0.66** ns 26** 9.9** 3.4** 0.86** ns

2014
NDVIA 7.7** 72** ns 0.64** 0.89** 135** 129** 2.8* 0.80** 0.83**
NDVIR 6.1** 59** ns 0.60** 0.90** 118** 166** 2.6* 0.79** 0.84**
NDVIG 8.1** 62** ns 0.64** 0.90** 150** 138** 2.7* 0.82** 0.79**
CI 11** 85** 1.9* 0.74** 0.91** 96** 132** 8.9 0.84** 0.86**
PRI 5.1* 59** ns –0.44** –0.85** 71** 80** 3.6* –0.72** -0.84**
NDARE 4.9* 98** ns 0.58** 0.92** 124** 166** 4.6** 0.80** 0.87**
NDRRE 4.2** 38** ns 0.53** 0.92** 106** 278** 5.5** 0.81** 0.88**
NDRE 14** 68** ns 0.73** 0.87** 127** 145** 4.5** 0.84** 0.81**
CCCI 17.5** ns ns 0.80** ns 45** 3.5* 5.0** 0.86** ns
DATT 89** 5.8** 1.6* 0.82** 0.60** 107** 24** 6.1** 0.87** 0.59**
MTCI 86** 8.2** 1.6* 0.83** 0.65** 102** 28** 6.4** 0.88** 0.65**
CIRE 15** 71** ns 0.74** 0.88* 98** 142** 7.2** 0.84** 0.84**
Tc–Ta ns 60** ns ns –0.76** 6.1** 57** ns ns –0.90**
Plant	measures
			Biomass ns 4.2** ns 0.48** 0.29* ns 8.2** 2.0* 0.39** 0.44**
			N	concentration 8.0** 6.6** ns 0.71** 0.49** 137** 5.5** 6.0** 0.91** ns
			Total	N	uptake 10** 8.9* ns 0.68** 0.44** 34** 8.5** 3.4** 0.84** 0.47**
*	Significant	at	the	a	<	0.05	level.
**	Significant	at	the	a	<	0.01	level.
†	VIs,	vegetation	indices;	NDVIA,	normalized	difference	vegetation	index	amber;	NDVIR,	normalized	difference	vegetation	index	red;	NDVIG,	
normalized	difference	vegetation	index	green;		CI,	chlorophyll	index	using	amber;	PRI,	physiological	reflectance	index;	NDARE	normalized	difference	
vegetation	index-amber-red	edge;	NDRRE,	normalized	difference	vegetation	index-red-red	edge;	NDRE,	normalized	difference	red	edge	index;	CCCI,	
canopy	chlorophyll	content	index;	DATT,	Datt,	1999;	MTCI,	Meris	terrestrial	chlorophyll	index;	CIRE,	chlorophyll	index	vegetation	index.
‡	ns	is	not	significant	at	a	=	0.05.	
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Fig.	2.	Vegetation	indices	normalized	difference	vegetation	index	amber	(NDVIA),	physiological	reflectance	index	(PRI),	canopy	chlorophyll	
content	index	(CCCI),	and	DATT	at	Zadoks	32	and	39	as	affected	by	five	N	fertilizer	rates	and	10	overhead	sprinkler	irrigation	levels,	
Maricopa,	AZ,	2013,	2014.
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Table	3.	Partial	R2s	and	F	tests	for	stepwise	regression	of	12	vegetation	indices	(dependent	variables)	of	durum	wheat	vs.	biomass	and	
plant	N	concentration	(independent	variables)	using	proc	reg,	Maricopa,	AZ,	2013–2014.

VIs†
Independent	

variable	entered Partial	R2 Model	R2 C(p)	‡ F	value
Independent	

variable	entered Partial	R2 Model	R2 C(p) F	value
2013

Zadoks	32 Zadoks	39

NDVIA Plant	N 0.61 0.61 2.2 115** Plant	N 0.53 0.53 28.7 81**
Biomass 0.13 0.66 3.0 28**

NDVIR Plant	N 0.54 0.54 4.3 85** Biomass 0.50 0.50 28 73**
Biomass 0.02 0.56 3.0 ns§ Plant	N 0.14 0.64 3.0 27**

NDVIG Plant	N 0.57 0.57 1.6 97** Plant	N 0.54 0.54 27.9 87**
Biomass 0.12 0.66 3.0 27**

CI Plant	N 0.59 0.59 2.4 104** Plant	N 0.54 0.54 13.4 85**
Biomass 0.07 0.61 3.0 12**

PRI Plant	N 0.34 0.34 3.5 38** Plant	N 0.50 0.50 21.2 72**
Biomass 0.02 0.36 3.0 ns Biomass 0.11 0.61 3.0 20**

NDARE Plant	N 0.46 0.46 1.4 63** Plant	N 0.50 0.50 20.9 72**
Biomass 0.11 0.61 3.0 20**

NDRRE Plant	N 0.35 0.35 4.1 39** Plant	N 0.47 0.47 22.5 65**
Biomass 0.03 0.38 3.0 ns Biomass 0.12 0.59 3.0 22**

NDRE Plant	N 0.69 0.69 3.5 162** Plant	N 0.58 0.58 30.4 103**
Biomass 0.01 0.70 3.0 ns Biomass 0.12 0.70 3.0 29*

CCCI Plant	N 0.65 0.65 1.0 133** Plant	N 0.34 0.34 2.5 37**

DATT Plant	N 0.73 0.73 1.3 202** Plant	N 0.73 0.73 14.5 197**
Biomass 0.04 0.77 3.0 14**

MTCI Plant	N 0.73 0.73 1.2 196** Plant	N 0.71 0.71 13.3 183**
Biomass 0.04 0.75 3.0 12**

CIRE Plant	N 0.68 0.68 3.4 156* Plant	N 0.59 0.59 24.0 104**
Biomass 0.01 0.69 3.0 ns Biomass 0.10 0.69 3.0 23**

Tc–Ta Plant	N 0.10 0.10 1.7 8.3**
2014

NDVIA Plant	N 0.25 0.25 20.9 24** Plant	N 0.34 0.34 36.7 38**
Biomass 0.16 0.41 3.0 20** Biomass 0.20 0.54 3.0 32**

NDVIR Biomass 0.24 0.24 19.1 23** Biomass 0.33 0.33 32.0 36**
Plant	N 0.15 0.39 3.0 18** Plant	N 0.20 0.53 3.0 31**

NDVIG Plant	N 0.25 0.25 22.0 24** Plant	N 0.37 0.37 33.7 43**
Biomass 0.17 0.42 3.0 21** Biomass 0.20 0.57 3.0 33**

CI Plant	N 0.28 0.28 19.8 28** Plant	N 0.45 0.45 24.9 60**
Biomass 0.15 0.15 3.0 19** Biomass 0.14 0.59 3.0 24**

PRI Plant	N 0.22 0.22 14.1 20** Biomass 0.31 0.31 23.9 33**
Biomass 0.12 0.34 3.0 13** Plant	N 0.17 0.48 3.0 23**

NDARE Plant	N 0.21 0.21 17.2 19** Plant	N 0.32 0.32 26.9 35**
Biomass 0.12 0.35 3.0 16** Biomass 0.18 0.50 3.0 26**

NDRRE Biomass 0.23 0.23 15.4 22** Plant	N 0.35 0.35 28.9 35**
Plant	N 0.13 0.36 3.0 14** Biomass 0.19 0.51 3.0 28**

NDRE Plant	N 0.30 0.30 25.2 31** Plant	N 0.44 0.44 38.4 59
Biomass 0.18 0.48 3.0 24** Biomass 0.19 0.63 3.0 37

CCCI Plant	N 0.10 0.10 1.8 8.0** Plant	N 0.64 0.64 3.7 132**
Biomass 0.01 0.65 3.0 ns

DATT Plant	N 0.36 0.36 5.7 42** Plant	N 0.67 0.67 35.7 147**
Biomass 0.04 0.40 3.0 4.7* Biomass 0.11 0.78 3.0 35**

Continued	next	page
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VIs†
Independent	

variable	entered Partial	R2 Model	R2 C(p)	‡ F	value
Independent	

variable	entered Partial	R2 Model	R2 C(p) F	value
MTCI Plant	N 0.38 0.38 7.5 45** Plant	N 0.68 0.68 36.3 153**

Biomass 0.05 0.43 3.0 6.5* Biomass 0.11 0.79 3.0 35**
CIRE Biomass 0.31 0.31 24.8 33** Biomass 0.48 0.48 36.4 67**

Plant	N 0.17 0.48 3.0 24** Plant	N 0.17 0.65 3.0 35**
Tc–Ta Biomass 0.20 0.20 13.6 18** Biomass 0.21 0.21 2.2 20**

Plant	N 0.12 0.32 3.0 13**
*	Significant	at	the	a	<	0.05	level.
**	Significant	at	the	a	<	0.01	level.
†	VIs,	vegetation	indices;	NDVIA,	normalized	difference	vegetation	index	amber;	NDVIR,	normalized	difference	vegetation	index	red;	NDVIG,	
normalized	difference	vegetation	index	green;		CI,	chlorophyll	index	using	amber;	PRI,	physiological	reflectance	index;	NDARE	normalized	difference	
vegetation	index-amber-red	edge;	NDRRE,	normalized	difference	vegetation	index-red-red	edge;	NDRE,	normalized	difference	red	edge	index;	CCCI,	
canopy	chlorophyll	content	index;	DATT,	Datt,	1999;	MTCI,	Meris	terrestrial	chlorophyll	index;	CIRE,	chlorophyll	index	vegetation	index.
‡ C(p)	is	Mallow’s	Cp	statistic,	smaller	value	is	better	fit.
§	ns	is	not	significant	at	a =	0.05.

Table	3	(continued).

Table	4.	Simple	correlation	of	12	vegetation	indices	of	durum	wheat	with	grain	N,	yellow	berry	and	grain	yield,	using	PROC	CORR,	
Maricopa,	AZ,	2013–2014.

VIs†
Grain	
yield Grain	N

Yellow	
berry

Total	
biomass

Total	N	
uptake

Grain	
yield Grain	N

Yellow	
berry

Total	
biomass

Total	N	
uptake

2013
Zadoks	32 Zadoks	39

NDVIA 0.37** 0.78** –0.76** 0.50** 0.77** 0.85** 0.51** –0.52** 0.82** 0.88**
NDVIR 0.35** 0.75** –0.73** 0.49** 0.75** 0.85** 0.50** –0.50** 0.82** 0.86**
NDVIG 0.49** 0.74** –0.67** 0.58** 0.81** 0.84** 0.52** –0.53** 0.81** 0.88**
CI 0.36** 0.78** –0.75** 0.49** 0.77** 0.86** 0.48** –0.51** 0.78** 0.87**
PRI 0.21* –0.65** 0.60** ns‡** –0.31** –0.87** –0.46** 0.49** –0.83** –0.88**
NDARE 0.39** 0.68** –0.67** 0.57** 0.77** 0.88** 0.45** –0.47** 0.83** 0.87**
NDRRE 0.35** 0.64** –0.63** 0.53** 0.70** 0.88** 0.45** –0.47** 0.83** 0.86**
NDRE 0.35** 0.84** –0.80** 0.39** 0.73** 0.82** 0.56** –0.57** 0.79** 0.89**
CCCI 0.19* 0.78** –0.71** ns 0.50** ns 0.64** –0.66** ns 0.39**
DATT 0.22* 0.84** –0.78** 0.27* 0.63** 0.63** 0.70** –0.72** 0.57** 0.85**
MTCI 0.26* 0.85** –0.78** 0.21* 0.65** 0.65** 0.68** –0.70** 0.59** 0.85**
CIRE 0.33** 0.84** –0.80** 0.39** 0.73** 0.83** 0.55** –0.57** 0.78** 0.89**
Tc–Ta –0.65** –0.26* 0.21** –0.58** –0.55** –0.82** ns ns –0.78** –0.51**

2014

NDVIA 0.78** ns –0.22* 0.82** 0.68** 0.84** 0.39** –0.52** 0.82** 0.82**
NDVIR 0.76** ns –0.20* 0.81** 0.65** 0.84** 0.37** –0.50** 0.83** 0.80**
NDVIG 0.78** ns –0.22* 0.82** 0.67** 0.84** 0.42** –0.55** 0.81** 0.81**
CI 0.82** ns –0.41** 0.85** 0.75** 0.87** 0.39** 0.68** 0.81** 0.85**
PRI –0.73** ns 0.22** –0.80** –0.70** –0.86** –0.28** 0.43** –0.85** –0.81**
NDARE 0.76** ns ns 0.84** 0.65** 0.87** 0.32** –0.47** 0.85** 0.85**
NDRRE 0.75** ns ns 0.82** 0.63** 0.87** 0.32** –0.47** 0.86** 0.86**
NDRE 0.82** 0.25* –0.36** 0.81** 0.74** 0.84** 0.48** –0.60** 0.79** 0.86**
CCCI 0.27* 0.67** –0.70* ns 0.38** 0.51** 0.77** –0.79** 0.21* 0.67**
DATT 0.70** 0.64** –0.72** 0.51** 0.79** 0.74** 0.68** –0.77** 0.59** 0.86**
MTCI 0.72** 0.62** –0.70** 0.55** 0.81** 0.75** 0.66** –0.73** 0.55** 0.81**
CIRE 0.75** 0.27* –0.38** 0.82** 0.77** 0.68** 0.47** –0.59** 0.87** 0.87**
Tc–Ta –0.58** 0.18* ns –0.71** –0.43** –0.85** ns ns –0.86** –0.56**
*	Significant	at	the	a	<	0.05	level.
**	Significant	at	the	a	<	0.01	level.
†	VIs,	vegetation	indices;	NDVIA,	normalized	difference	vegetation	index	amber;	NDVIR,	normalized	difference	vegetation	index	red;	NDVIG,	
normalized	difference	vegetation	index	green;		CI,	chlorophyll	index	using	amber;	PRI,	physiological	reflectance	index;	NDARE	normalized	difference	
vegetation	index-amber-red	edge;	NDRRE,	normalized	difference	vegetation	index-red-red	edge;	NDRE,	normalized	difference	red	edge	index;	CCCI,	
canopy	chlorophyll	content	index;	DATT,	Datt,	1999;	MTCI,	Meris	terrestrial	chlorophyll	index;	CIRE,	chlorophyll	index	vegetation	index.
‡	ns	is	not	significant	at	a	=	0.05.	
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smoother, and more consistent N trend than CCCI, and less 
effect of water than NDVIA. The DATT and MTCI, similar 
to the Shiratsuchi et al. (2011) irrigated corn (Zea mays L.) 
study, out-performed the NDVIs in being able to distinguish N 
rates while being relatively less sensitive to water. The strong N 
sensitivity, with weaker influence of water that CCCI showed 
in this study was similar to the report for broccoli (Brassica 
oleracea), in a similar water × N sprinkler study in Maricopa, 
AZ (El-Shikha et al., 2007). These VIs, however, did respond 
strongly to water at the two highest N rates at Zadoks 39, as 
shown for DATT in Fig. 2. This N × water interaction was 
significant for all VIs at Zadoks 39 (Table 2), but the fact that 
partial correlation does not pick this up is a major disadvantage 
of that procedure. On the other hand, the economic optimum 
N rate for grain yield in this study was 200 and 136 kg N ha–1 
in 2013, and 2014, respectively, rates at which VIs like DATT 
were still less sensitive to water (Mon et al., 2016). Given that 
CCCI, DATT, and MTCI were the VIs with the most consis-
tent ability to distinguish N rates across both years with mini-
mal water effects, these VIs could be the subject of further N 
management studies with variable water regimes.

Another goal of the study was to identify VIs that were 
strongly sensitive to water, but not to N. No VIs did this as 
consistently as canopy temperature (Table 2). At Zadoks 39 in 
2013, no VIs showed high water–low N partial correlation, but 
canopy temperature did. However, at Zadoks 32 in 2014, the 
three NDVIs, CI, PRI, NDARE, NDRRE, NDRE, and CIRE 
all showed larger partial correlation with water than with N. 
The mixed model analysis shows that for biomass, plant N and 
total N uptake, the effects of water and N were similar to the 
other data sets. Stepwise regression results for Zadoks 32 in 
2014, however do show much lower R2s than the other three 
growth stage–years (Table 3). In the warmer-than-average 2014 
season (Mon et al., 2016), canopy temperature showed very 
high negative partial correlation to water, –0.76 and –0.90 at 
Zadoks 32 and 39, respectively, with no N effect. Suárez et al. 
(2008) reported that in olive orchard (Olea spp.) in Spain, PRI 
was highly correlated with canopy temperature.

In many cases, VIs had significant water or N effects, but 
biomass was not affected by N or water. Nitrogen concentra-
tion of wheat and total N uptake consistently showed N and 
water effects. The size of the plant sample was small compared 
to the area the active sensors scanned. The stepwise regression 
results in Table 3 clearly demonstrate the importance of plant 
N concentration in what the VIs are detecting, especially if 
biomass is not affected by N. Vegetation indices, however, 
were not consistent in whether plant N or biomass entered the 
stepwise regression models first. In terms of evaluating the VIs 
ability to detect N more than water, or water more than N, it is 
important to consider in this study that between growth stages, 
the N effect became stronger. 

In terms of VIs ability to estimate plant N, the best performing 
VIs were NDVIA, DATT, and MTCI. The NDRE and CCCI 
showed high correlation with plant N in several cases, but these 
were not as consistent. This is contrast to the reports of Tilling 
et al. (2007) who reported that NDRE and CCCI had notably 
greater correlations with plant N than NDVI. The slight improve-
ment of estimating plant N with NDVIA compared to NDVIR 
was previously reported in cotton by Bronson et al. (2011).

With respect to simple correlations, the NDVIs consistently 
showed high correlation with grain yield, with the excep-
tion of Zadoks 32 in 2013 (Table 4). All of the other VIs 
consistently correlated with grain yield, with the exception of 
CCCI, DATT, and MTCI. Correlations were high but nega-
tive between grain yield and PRI. The trade-off observed that 
CCCI, DATT, and MTCI were the best at distinguishing N 
rates with minimal water effects, but their correlation with 
grain yield was poor, was not expected. Interestingly, CCCI 
correlated better with grain N than with grain yield. Studies 
using VIs other than NDVI to estimate wheat grain N are rare 
(Hansen et al., 2002; Wang et al., 2004). Wright et al. (2004) 
reported that NDVIG correlated better than NDVIR with 
wheat grain protein, similar to our study.

CONCLuSION
In short, the NDVIs were consistently strong indicators of N 

and water effects, and in many cases showed modest distinction 
between the two factors. The VIs that were the most effective 
in exhibiting N effects with minimal water effects were CCCI, 
DATT, and MTCI. These three VIs also showed good poten-
tial in estimating grain N. None of the VIs were as effective as 
canopy temperature in detecting water effects with minimal N 
effects. Nitrogen and irrigation management in durum wheat 
could be improved with combined monitoring of N status-
indicating VIs, such as CCCI, DATT, or MTCI, and of water 
status via canopy temperature.
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